
Journal of Approximation Theory 137 (2005) 201–225
www.elsevier.com/locate/jat

Discrete orthogonal projections on multiple knot
periodic splines

R.D. Grigorieffa, I.H. Sloanb,∗
aTechnische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
bSchool of Mathematics, University of New South Wales, Sydney 2052, Australia

Received 29 October 2004; accepted 6 September 2005

Communicated by Amos Ron
Available online 27 October 2005

Abstract

This paper establishes properties of discrete orthogonal projections on periodic spline spaces of order r,
with knots that are equally spaced and of arbitrary multiplicity M �r . The discrete orthogonal projection
is expressed in terms of a quadrature rule formed by mapping a fixed J-point rule to each sub-interval.
The results include stability with respect to discrete and continuous norms, convergence, commutator and
superapproximation properties. A key role is played by a novel basis for the spline space of multiplicity M,
which reduces to a familiar basis when M = 1.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Periodic splines have a long history. Periodic splines are 1-periodic real-valued functions, which
are piecewise polynomials of order r (i.e. of degree at most r−1 on each subinterval), with equally
spaced knots xj = jh = j/N for j ∈ Z, and most often with maximum smoothness (i.e. Cr−2) at
each knot. Early papers devoted to smoothest periodic splines are [5,11,14]. The difference in this
paper is that we allow knots of arbitrary (but constant) multiplicity M; equivalently, we require
only Cr−M−1 continuity at the knots. Splines with multiple knots have previously been studied
in [8].

More precisely, we consider 1-periodic splines, i.e. splines on T = R/Z, with knots of
equal multiplicity M �1, on equidistant meshes. Let r, M, N with M �r be positive integers.
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We define the set of knots

�h := {xj = jh, j = 0, . . . , N − 1} for h ∈ H := {1/N, N ∈ N}
and denote by S

r,M
h the space of 1-periodic splines of order r (i.e. piecewise polynomials of degree

at most r − 1) with M-fold breakpoints at the knots in �h. It is easily seen that S
r,M
h is a subspace

of Cr−M−1 of dimension MN, where Ck = Ck(T) is the space of 1-periodic k times continuously
differentiable functions. Here, C−1 means that jumps are allowed at the knots in �h, where the
value of the function at a point of discontinuity is normalised to be the arithmetic mean of the
left- and right-hand limits.

In the present paper, we study the approximation of a 1-periodic function (or distribution) f
by a periodic spline fh of order r �1 and knots of arbitrary multiplicity M ∈ [1, r] by what we
shall call ‘discrete orthogonal projection’. Discrete orthogonal projection is based on a composite
quadrature rule

QNf := h

N−1∑
k=0

J∑
j=1

�j f (xk,j ), xk,j := xk + h�j , (1)

derived from the basic quadrature formula

Q1f :=
J∑

j=1

�j f (�j ), (2)

where the quadrature points {�j } and weights {�j } satisfy

0��1 < �2 < · · · < �J < 1, J �M,

J∑
j=1

�j = 1, �j > 0. (3)

Associated with the quadrature rule is an inner product

(vh, wh)h := QN(vhwh) (4)

on the linear space Wh of ‘grid’ functions vh and wh, which are functions defined on the grid of
quadrature points

�′
h := {xk,j = xk + h�j , k = 0, . . . , N − 1, j = 1, . . . , J }. (5)

The inner product in (4) can be thought of as an approximation to

(v, w) :=
∫ 1

0
v(x)w(x) dx for v, w ∈ L2(T). (6)

Given the grid function fh, the discrete orthogonal projection Rhfh is the spline defined by

Rhfh ∈ S
r,M
h (Rhfh, zh)h = (fh, zh)h for all zh ∈ S

r,M
h . (7)

Conditions for this to be a valid definition are given in Section 3. Clearly, Rhfh can be viewed as
a discrete version of the orthogonal projection Ohf defined by

Ohf ∈ S
r,M
h (Ohf, zh) = (f, zh) for all zh ∈ S

r,M
h .
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For the particular case J = M it is easily seen that discrete orthogonal projection is equivalent to
interpolation: that is,

(Rhfh)(xk,j ) = fh(xk,j ) for k = 0, . . . , N − 1, j = 1, . . . , M.

The significance of the periodicity of the splines and the equal separation of their knots is that a
much more refined (Fourier) analysis is available for periodic splines than for splines with general
meshes. For this reason, the analysis in this paper is carried out in Sobolev spaces of arbitrary real
order s (see for example [12, Chapter 5]). For s ∈ R, let Hs = Hs(T) denote the usual Sobolev
space of periodic distributions equipped with the norm

‖f ‖s :=
( ∞∑

n=−∞
〈n〉2s |f̂ (n)|2

)1/2

with 〈n〉 :=
{

1 if n = 0,

|n| if n �= 0,
(8)

where

f̂ (n) :=
∫

T
f (x)e−i2�nx dx for n ∈ Z

are the complex Fourier coefficients of the 1-periodic distribution f. It is well-known (see e.g. [8])
that for 1�M �r

S
r,M
h ⊂ Hs for s < r − M + 1

2 .

The present study is motivated also by the desire to analyse spline methods for more general
operator equations of the form

Lu = f,

where L is a pseudo-differential operator. Such an equation may, for example, represent a bound-
ary integral equation on a smooth curve, after appropriate parameterisation. The earliest such
application, for the smoothest spline case, seems to have been that of Quade and Collatz [11],
who used Fourier techniques to analyse the collocation approximation with C0 piecewise linear
splines (i.e. r = 2 and M = 1) for certain pseudo-differential operator equations. For a smoothest
spline of general order r, the collocation approximation has the form

Luh(jh + �h) = f (jh + �h) for j = 0, . . . , N − 1,

where uh is a spline of order r, and � is a number that determines the location of the collocation
points in relation to the knots {jh}. (In the Quade and Collatz case � = 0.) Note especially that in
the case of smoothest splines there is only one degree of freedom per interval: the dimensionality
of the space of smoothest splines is just N. The simplicity resulting from just one degree of
freedom per interval is lost when multiple knots are allowed. Analyses of collocation methods for
more general operator equations, and for smoothest splines of arbitrary orders, have been made by
Arnold [1], Arnold and Wendland [2] and Saranen and Wendland [13]. Collocation for operator
equations with multiple knots were studied by McLean and Prößdorf [8].

Another smoothest spline method for operator equations is the ‘qualocation approximation’
[4,16,18]; for a review see [15]. This takes the form

(Luh, zh)h = (f, zh)h for all zh ∈ S
r,M
h .
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Clearly, approximation methods of this kind are closely related to discrete orthogonal projection;
indeed, discrete orthogonal projection is the special case in which L is the identity operator. The
qualocation method is equivalent to collocation when J = M.

An important tool in the whole paper is a new spline basis introduced in Section 2, which
may be of interest in its own right. This basis is also suitable for performing concrete numerical
calculations. The new basis is a consistent extension of one first introduced in [11,14] for splines
with simple knots. It contrasts with the recursive characterisation of multiple knot splines used
in [8].

Section 3 is devoted to stability properties and the approximation power of the spline projection
Rh. It turns out to be very helpful for the analysis if these properties are established, as they are
in Proposition 3.11, also with respect to the norm ‖ · ‖h, defined in the space of grid functions
Wh by

‖fh‖h := (fh, fh)
1/2
h for fh ∈ Wh.

A helpful result is the norm equivalence result on spline spaces given in Proposition 3.3.
As is well known, the analysis of variable coefficient operators L relies on ‘superapproximation’

and ‘commutator’ properties of the spline spaces. (In [9], these properties are called commutator
properties of types I and II, and labelled as CPI, CPII.) For the case of smoothest splines these
properties were proved in [7]. For the multiple-knot case they are proved here as Theorems 4.1
and 4.4. At the same time various results in the literature are sharpened, and sometimes proved
in a simpler way. The proof of the so-called dual commutator property in Theorem 4.4 relies
essentially on stability and approximation with respect to the norm ‖ · ‖h.

As an example, we show in Section 5 how our results can be applied to interpolation for splines
with double knots. Recall that interpolation is the special case of discrete orthogonal projection
when the number of quadrature points per interval is equal to the number of degrees of freedom,
i.e. in this case J = M = 2. A conjecture left open in [8] for the case of double knots is proved
here as Proposition 5.2.

A set of basic formulas used throughout the paper is collected in the Appendix.

2. A spline basis

A key element for the analysis in this paper is a suitable basis for the spline space S
r,M
h , the

space of periodic splines of order r with knots of multiplicity M. In the collocation analysis in [8]
the authors used a recursive characterisation of such splines. We owe much of the progress in this
paper to working with a basis that generalises the nice basis for the case M = 1 in [4,5,14]. For
this purpose we define for M �r the functions

�̃k(�, y) :=
∑
��=0

�k−1

(y + �)r
��(�) for |y|� 1

2
, � ∈ R and k = 1, . . . , M, (9)

��(�) := exp(i2���) for � ∈ Z and � ∈ R, (10)

�1(�, y) := 1 + yr �̃1(�, y), (11)

�k(�, y) := �̃k(�, y) for k = 2, . . . , M, (12)

�k,�(x) := ��(x)�k

(
Nx,

�

N

)
for k = 1, . . . , M and � ∈ �h, (13)
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where

�h :=
(

−N

2
,
N

2

]
∩ Z for Nh = 1. (14)

The Fourier series in (9) may not be absolutely convergent. We always understand the sum to
mean the limit as L → ∞ of the symmetric partial sums extended from −L to L. In the case
M = 1 we obtain the basis used in [4].

Proposition 2.1. The set �k,� for k = 1, . . . , M and � ∈ �h is a basis in S
r,M
h .

Proof. We first show that �k,� ∈ S
r,M
h for k = 1, . . . , M . It is known from [4] that �1,� ∈ S

r,1
h ⊂

S
r,M
h . It is then clear that also the derivatives �(j)

1,� ∈ S
r−j,1
h ⊂ S

r,M
h for j = 1, . . . , M − 1 (here

in the case M = r the value of �(M−1)
1,� (x) at points x ∈ �h is defined to be the arithmetic mean of

its one-sided limits). If M = 1 we are done, so assume M > 1. We prove that for k = 2, . . . , M

each �k,� is a linear combination of these functions.
Note first that for y fixed, �1(·, y) is (M − 1)-fold differentiable because M �r, except at the

points of �h (see [3]), which can be excluded in the following consideration. The differentiation
can be performed term by term, yielding

dj�1(Nx, y)

dxj
= (i2�N)jyr�j+1(Nx, y) for j = 1, . . . , M − 1.

By the Leibniz rule we obtain for k = 1, . . . , M − 1,

�(k)
1,�(x) =

k∑
j=0

(
k

j

)
�(k−j)

� (x)
dj�1

(
Nx, �

N

)
dxj

= (i2��)k��(x)�1

(
Nx,

�

N

)
+

k∑
j=1

(
k

j

)
(i2��)k−j��(x)(i2�N)j

( �

N

)r

�j+1

(
Nx,

�

N

)

= (i2��)k�1,�(x) +
( �

N

)r
k∑

j=1

(
k

j

)
(i2��)k−j (i2�N)j�j+1,�(x). (15)

In the case � �= 0 it is seen successively from (15) that �k+1,� ∈ S
r,M
h for k = 1, . . . , M − 1.

We are left with the case � = 0. Since �1,0 = 1 we obtain no information by differentiation.
But note that

�k,0(x) = �k(Nx, 0) =
∑
j �=0

jk−1−r�jN (x) for k = 2, . . . , M.

The sum∑
j �=0

j−1�jN (x)

is the Fourier series of the h-periodically extended piecewise continuous function f (x) =
i2�(1/2 − Nx), x ∈ (0, h), f (0) := 0. It therefore belongs to S

2,2
h . Term by term integration

r − k times shows that �k,0 ∈ S
r−(k−2),2
h ⊂ S

r,M
h .
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We turn now to the proof of the linear independence of the functions {�k,�, � ∈ �h, k =
1, . . . , M}. It is shown in Lemma A.1 that the Gram matrix of this set is block diagonal with blocks
labelled by �, thus it is sufficient to prove that for each fixed � the set {�k,�, k = 1, . . . , M} is
linearly independent. For � = 0 we have seen before that the {�k,0, k = 1, . . . , M} are piecewise
polynomials of different degrees, which are consequently linearly independent. For � �= 0 the
recursion (15) yields the representation

�k,� =
k−1∑
j=0

ck,j �(j)

1,� for k = 2, . . . , M (16)

with ck,k−1 �= 0. From the Fourier series of �1,� it is known that �1,� is a piecewise polynomial

of exact degree r − 1 on each subinterval, thus the successive derivatives �(j)

1,� all have different
degrees, implying the linear independence we wanted to prove. �

The following result exposes the essential nature of the basis {�k,�} in the spline space S
r,M
h :

under translation by h each such spline behaves like the complex exponential function��; while for
fixed � ∈ �h the sequence �1,�, �2,�, . . . , �M,� has decreasing smoothness, with the multiplicity
of the knots increasing from one member of the sequence to the next.

Proposition 2.2. For � ∈ �h and k = 1, . . . , M

�k,�(x + h) = e2�i�h�k,�(x),

�k,� ∈ S
r,k
h .

Proof. The first result is trivial on noting �(� + 1, y) = �(�, y). For � �= 0 the second follows
from (16), on using

�(k−1)
1,� ∈ S

r−k+1,1
h ⊂ S

r,k
h .

For � = 0 we noted already in the proof of Proposition 2.1 that

�k,0 ∈ S
r−k+2,2
h ⊂ S

r,k
h for k = 2, . . . , M,

while �1,0 = 1 ⊂ S
r,1
h . �

The new basis can be derived systematically by Fourier transformation of the B-spline basis in
the usual divided difference form.

3. The discrete orthogonal projection Rh

The projection Rh : Wh → S
r,M
h is defined by

(Rhfh, �)h = (fh, �)h for all � ∈ S
r,M
h . (17)

In this section we give conditions for Rh to be well defined, and study some important properties
of Rh.
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Lemma 3.1. The positive semidefinite sesquilinear form (·, ·)h is an inner product on S
r,M
h , and

hence Rh is well defined, iff for all � ∈ �h the M functions {�k(·, �
N

)), k = 1, . . . , M} are linearly
independent on the set of quadrature points {�j , j = 1, . . . , J }.

Proof. It follows from Lemma A.3 that the Gram matrix with respect to (·, ·)h of the spline basis
{�k,�} is block diagonal, where the elements of the block matrices B(y), y = �/N, � ∈ �h are
given by

Bk,�(y) := Q (�k(·, y), ��(·, y)) for k, � = 1, . . . , M (18)

with

Q(v, w) := Q1(vw) =
J∑

j=1

�j v(�j )w(�j ). (19)

Since Q is a positive semidefinite sesquilinear form on grid functions on the quadrature points,
the assertion follows immediately. �

Remark 3.2. Clearly, J �M is necessary for Rh to be well defined. In the case J = M note that
Rhfh is nothing else than interpolation at the quadrature points. For J > M a consequence of
Lemma 3.1 is that the projection Rh is well defined iff there exists a selection of M quadrature
points from (3), such that the corresponding interpolatory projection is well defined.

The following proposition, an equivalence property of two norms for the space S
r,M
h , plays an

important role in the analysis.

Proposition 3.3. Let 1�M �r and s < r − M + 1
2 . On S

r,M
h the norm ‖ · ‖s is equivalent,

uniformly for h ∈ H, to the norm

‖vh‖s,h :=
⎛⎝∑

�∈�h

[
〈�〉2s |c1,�|2 + N2s

M∑
k=2

|ck,�|2
]⎞⎠1/2

, (20)

where the coefficients ck,� are defined by the unique representation

vh =
M∑

k=1

∑
�∈�h

ck,��k,� for vh ∈ S
r,M
h . (21)

Proof. Introducing the notation used in Lemma A.6,

c̃k,� :=
{

�rNs−rc1,� for k = 1,

Nsck,� for k = 2, . . . , M,

�(s)
k (�, y) :=

∑
��=0

|y + �|s �k−1

(y + �)r
��(�) for � ∈ R and |y|� 1

2
,

we can write, from (20)

‖vh‖2
s,h =

∑
�∈�h

〈�〉2s |c1,�|2 +
∑
�∈�h

M∑
k=2

|c̃k,�|2, (22)
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while from Lemma A.6

‖vh‖2
s =

∑
�∈�h

〈�〉2s |c1,�|2 +
∑
�∈�h

∥∥∥∥∥
M∑

k=1

c̃k,��(s)
k

(
·, �

N

)∥∥∥∥∥
2

0

. (23)

The latter norm is associated with the sesquilinear form

M∑
k=1

M∑
�=1

akGk,�(y)a� (24)

on CM with y = �/N of the Gram matrix G with elements

Gk,�(y) := (
�(s)

k (·, y), �(s)
� (·, y)

)
0 for |y|�1/2.

The coefficients Gk,�(·) are continuous for s + M − 1 − r < − 1
2 . Hence, the sesquilinear form

(24) is bounded uniformly in y, yielding∥∥∥∥∥
M∑

k=1

c̃k,��(s)
k

(
·, �

N

)∥∥∥∥∥
2

0

�C

(
M∑

k=1

|c̃k,�|
)2

�C

M∑
k=1

|c̃k,�|2,

where here and elsewhere C denotes a generic constant, which may take different values at different
occurrences. To prove ‖vh‖s �C‖vh‖s,h we thus estimate the second term in (23) as∑

�∈�h

∥∥∥∥∥
M∑

k=1

c̃k,��(s)
k

(
·, �

N

)∥∥∥∥∥
2

0

� C
∑
�∈�h

(
�2r

N2r−2s
|c1,�|2 +

M∑
k=2

|c̃k,�|2
)

� C
∑
�∈�h

(
〈�〉2s |c1,�|2 +

M∑
k=2

|c̃k,�|2
)

�C‖vh‖2
s,h,

where we needed |�/N |� 1
2 , r > s and |�|�〈�〉.

To prove the inequality in the reverse direction it is sufficient to show that the sesquilinear form
(24) is uniformly in y positive definite. Taking the continuity of G(·) into account, this follows
if we prove for each fixed y that the functions �(s)

k (·, y) are linearly independent. To verify this
property let

M∑
k=1

ck�
(s)
k (�, y) = 0 for � ∈ (0, 1).

After multiplication with ��(�) and integration we obtain the linear system

M∑
k=1

ck|y + �|s �k−1

(y + �)r
= 0 for � = 1, . . . , M,

which has a scaled Vandermonde matrix, and hence is nonsingular, implying c1 = · · · =
cM = 0. �

In the special case s = 0 we deduce from Proposition 3.3 the following:
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Corollary 3.4. Let 1�M �r . There exist constants 0 < c < c′ such that for all h ∈ H and
vh ∈ S

r,M
h the norm equivalence

c‖vh‖0 �

⎛⎝ M∑
k=1

∑
�∈�h

|ck,�|2
⎞⎠1/2

�c′‖vh‖0 (25)

holds, where vh has the form (21).

Next we prove a norm equivalence between the continuous and discrete norms corresponding
to (6) and (4), respectively.

Proposition 3.5. Let 1�M �r . The norms ‖ · ‖0 and ‖ · ‖h are equivalent on S
r,M
h , uniformly for

h ∈ H, iff the functions {�k(·, y), k = 1, . . . , M}, are for all y ∈ [− 1
2 , 1

2 ] linearly independent
on the set of quadrature points {�j }.

Proof. From Corollary A.3 we have, for vh written in the form (21), the relation

‖vh‖2
h =

∥∥∥∥∥∥
M∑

k=1

∑
�∈�h

ck,��k,�

∥∥∥∥∥∥
2

h

=
M∑

k,�=1

∑
�∈�h

Bk,�

( �

N

)
ck,�c�,�. (26)

Note that the functions �k(�j , ·), j = 1, . . . , J , are continuous on [− 1
2 , 1

2 ]. Hence the elements
Bk,�(y) of the matrix B(y) are bounded uniformly in y, and it follows from (26) and Corollary
3.4 that

‖vh‖2
h �C

M∑
k=1

∑
�∈�h

|ck,�|2 �C‖vh‖2
0. (27)

We now show that the conditions in the proposition are equivalent to

M∑
k=1

|ak|2 �C

M∑
k,�=1

Bk,�

( �

N

)
akal for h ∈ H, � ∈ �h, a ∈ CM, (28)

which in view of Corollary 3.4 completes the proof. Assume first that the �k(·, y) are linearly
independent on the set of quadrature points. Then B(y) as a Gram matrix is positive definite for
each y ∈ [− 1

2 , 1
2 ]. From the continuity of B(·) we conclude that it is positive definite uniformly

in y and (28) follows. In the reverse direction, it follows from (28) that this inequality holds with
�/N replaced by y ∈ [− 1

2 , 1
2 ] since the set {�/N, � ∈ �h, h ∈ H} is dense there. Thus, the Gram

matrix B(y) is positive definite and consequently the �k(·, y) are linearly independent. �

We now turn to the stability and approximation power of Rh. We will frequently use the
following definition.

Definition 3.6. We say that the condition (R) is satisfied if the functions {�k(·, y), k = 1, . . . , M}
are linearly independent on the set of quadrature points {�j , j = 1, . . . , J } for all |y|� 1

2 .
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Our next aim is to establish approximation properties for the sequence {Rh}H. For this we need
to know the approximation power of the spline spaces S

r,M
h , h ∈ H. For this purpose we can use

the projection Ph : Ht → S
r,M
h which was introduced in [8, p. 428] through the definition

Phf ∈ S
r,M
h (Phf, �)0 = (f, �)0 for � ∈ S

∞,M
h , (29)

where

S
∞,M
h := span{��+�N , � ∈ �h, � ∈ (−M/2, M/2]}.

It is shown in [8, Theorem 3.4] that for s < r − M + 1
2 and s� t �r

‖Phf − f ‖s �Cht−s‖f ‖t for f ∈ Ht . (30)

Proposition 3.7. Let condition (R) be satisfied and assume 0�s < r − M + 1
2 , s� t �r and

1
2 < t . Then

‖Rhf − f ‖s �Cht−s‖f ‖t for f ∈ Ht . (31)

Proof. Let Ph be the projection from (29). We show that

‖Rhf − Phf ‖0 �Cht‖f ‖t for f ∈ Ht . (32)

The assertion then follows, after an application of the inverse property for spline spaces (see [8,
Theorem 3.4]), from (30) and the triangle inequality.

For the proof of (32) we first note that the Fourier coefficients of Phf satisfy (see [8, p. 428])

P̂hf (�) = f̂ (�) for � ∈ �h,

and, consequently, in the Fourier expansion of

g := f − Phf =
∑
�∈Z

ĝ(�)��,

we have ĝ(�) = 0 for � ∈ �h. The system determining the coefficients ck,� in

Rhf − Phf = Rhg =
M∑

k=1

∑
�∈�h

ck,��k,�

(note that RhPh = Ph from the projection property of Rh) is block-diagonal, with the �th block
given by

B
( �

N

)
c� = d� for � ∈ �h,

where c� ∈ CM is the vector with components ck,�, k = 1, . . . , M , and d� has components
dk,� = (g, �k,�)h, k = 1, . . . , M . We denote by | · | the Euclidean norm in CM . Now B(y), the
matrix defined in (18), has a uniformly in y bounded inverse, thus on taking the norm equivalence
(25) into account we obtain

‖Rhg‖2
0 �C

∑
�∈�h

|c�|2 �C
∑
�∈�h

|d�|2. (33)
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With the aid of Corollary A.4 we obtain

dk,� = (g, �k,�)h =
∑
�∈Z

ĝ(�)(��, �k,�)h

=
∑
�≡�

ĝ(�)Q
(
� �−�

N

, �k

(
·, �

N

))
. (34)

Thus on recalling ĝ(�) = 0 for � ∈ �h,

|d�|2 =
M∑

k=1

|(g, �k,�)h|2 �C

⎛⎝∑
�≡�

′ |ĝ(�)|
⎞⎠2

= C

⎛⎝∑
��=0

|� + �N |−t |� + �N |t |ĝ(� + �N)|
⎞⎠2

� C
∑
��=0

|� + �N |−2t
∑
��=0

|� + �N |2t |ĝ(� + �N)|2

� Ch2t
∑
��=0

∣∣∣ �

N
+ �

∣∣∣−2t ∑
��=0

|� + �N |2t |ĝ(� + �N)|2. (35)

Since 2t > 1, the sum
∑ |y + �|−2t converges uniformly for |y|�1/2, and since also∑

�∈�h

∑
��=0

|� + �N |2t |ĝ(� + �N)|2 �‖g‖2
t �C‖f ‖2

t ,

where for the last inequality (30) was used with t = s, a summation of (35) with respect to � ∈ �h

delivers (32). �

Corollary 3.8. If condition (R) is satisfied and 1�M < r (and hence r �2) the following stability
estimate holds for 1

2 < s < r − M + 1
2 :

‖Rhf ‖s �C‖f ‖s for f ∈ Hs. (36)

With respect to the norm ‖ · ‖h the projection Rh has the same approximation power as with
respect to the norm ‖ · ‖0. As a preparation for the proof of this fact we provide two lemmas.

Lemma 3.9. Let 1
2 < ��1. Then

‖f ‖h �C
(‖f ‖0 + h�‖f ‖�

)
for f ∈ H�. (37)

Proof. We consider first the case � ∈ ( 1
2 , 1). Let W 0,�(0, 1) denote the usual fractional-order

Sobolev space (see, for example, [10]) equipped with the norm

‖g‖0,� :=
(

‖g‖2
0 +

∫ 1

0

∫ 1

0

|g(�) − g(	)|2
|� − 	|1+2� d� d	

)1/2

. (38)

Let f ∈ H� be given. For xn ∈ �h we define gn ∈ W 0,�(0, 1) by

gn(�) := f (xn + h�) for � ∈ [0, 1].
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Since the imbedding W 0,�(0, 1) ↪→ C[0, 1] is continuous, there exists C such that

|gn(�)|2 � C‖gn‖2
0,�

= C

(
h−1‖f ‖2

L2(In)
+ h2�−1

∫
In

∫
In

|f (x) − f (y)|2
|x − y|1+2� dx dy

)
� C

(
h−1‖f ‖2

L2(In)
+ h2�−1

∫
In

∫ 1

0

|f (x) − f (y)|2
|x − y|1+2� dx dy

)
, (39)

where In := (xn, xn+1), and an obvious variable substitution was used to obtain the equality in
the second step. Choose � = �j , multiply by h�j and sum with respect to j and n to arrive at

‖f ‖2
h �C

J∑
j=1

�j

(
‖f ‖2

0 + h2�
∫ 1

0

∫ 1

0

|f (x) − f (y)|2
|x − y|1+2� dx dy

)
.

The assertion now follows since the norms ‖·‖0,� and ‖·‖� are equivalent on H�. The assertion in
the case � = 1 can be obtained by using instead of W 0,�(0, 1) the space H 1(0, 1) and instead of
(38) the derivative definition of the H 1 norm, and by using in (39) the continuity of the imbedding
H 1 ↪→ C[0, 1]. �

Lemma 3.10. Let 1
2 < ��1. Then

‖f − fh‖h �C
(‖f − fh‖0 + h�‖f ‖�

)
for f ∈ H� and fh ∈ S

1,1
h . (40)

Proof. We define the function gn as in the proof of the last lemma with f replaced by f − fh and
derive in the same way as there in place of (39) the inequality

|gn(�)|2 �C

(
h−1‖f − fh‖2

L2(In)
+ h2�−1

∫
In

∫
In

|f (x) − f (y)|2
|x − y|1+2� dx dy

)
(noting that fh is piecewise constant). The proof can now be continued as in the last
lemma. �

Proposition 3.11. Let condition (R) be satisfied and assume 1
2 < t �r . Then

‖f − Rhf ‖h + ‖f − Phf ‖h �Cht‖f ‖t for f ∈ Ht . (41)

Proof. Let � := min{t, 1}. First we consider the case r �2, which implies S
r,1
h ⊂ H 1 ⊂ H�. Let

fh ∈ S
r,1
h . Then Rhfh = fh, from which follows

‖f − Rhf ‖h �‖f − fh‖h + ‖Rh(f − fh)‖h. (42)

For the second term we have, by the norm equivalence for spline spaces established in Proposition
3.5, together with Proposition 3.7,

‖Rh(f − fh)‖h � C‖Rh(f − fh)‖0

� C (‖f − fh‖0 + ‖(I − Rh)(f − fh)‖0)

� C
(‖f − fh‖0 + h�‖f − fh‖�

)
,
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where I is the identity operator. For the first term in (42) the same bound follows from Lemma
3.9 with f replaced by f − fh. Thus we have

‖f − Rhf ‖h �C
(‖f − fh‖0 + h�‖f − fh‖�

)
and the first result follows from the approximation power of the spline space S

r,1
h . For r = 1 we

have t �1 and hence � = t . We may use Lemma 3.10 directly (since Rhf ∈ S
1,1
h ), to give

‖f − Rhf ‖h �C
(‖f − fh‖0 + ht‖f ‖t

)
and the result follows from the approximation power of the spline space S

1,1
h . The bound for

‖f − Phf ‖h is proved similarly by taking Ph in place of Rh. �

Since Rhf involves pointwise evaluation of f, the projection Rh is not stable with respect to
the norm ‖ · ‖0. Nevertheless on certain subspaces we have the following relation.

Lemma 3.12. Let condition (R) be satisfied, and assume 0�s < r − M + 1
2 and M < r . Let

{Th}H be for all t ∈ [0, r − M + 1
2 ) a bounded sequence of mappings in Ht . Then the following

stability estimate holds:

‖RhThvh‖s �C‖vh‖s for vh ∈ S
r,M
h and h ∈ H. (43)

Proof. For s > 1
2 we can invoke Corollary 3.8 to obtain (43). For 0�s� 1

2 we choose �, such
that � + s ∈ ( 1

2 , r − M + 1
2 ) and apply Proposition 3.7 with t = s + �. Taking into account the

inverse estimate for S
r,M
h we obtain

‖RhThvh‖s � ‖(I − Rh)Thvh‖s + ‖Thvh‖s

� Ch�‖Thvh‖s+� + ‖Thvh‖s

� C
(
h�‖vh‖s+� + ‖vh‖s

)
�C‖vh‖s . �

Lemma 3.13. Let condition (R) be satisfied and assume 0�s < r − M + 1
2 and M < r . Let

g ∈ Cr−M+1(T). Then for vh ∈ S
r,M
h the following convergence relation holds:

vh → v in Hs for (h ∈ H) ⇒ Rh(gvh) → gv in Hs for (h ∈ H). (44)

Proof. The operator of multiplication by the function g defines a sequence {Th}H satisfying the
assumptions of Lemma 3.12. Choose t ∈ (max{s, 1

2 }, r −M + 1
2 ). For arbitrary w ∈ Ht we have,

taking Proposition 3.7 and Lemma 3.12 into account, the estimates

‖Rh(gvh) − gv‖s � ‖Rhg(vh − Phw)‖s + ‖(Rh − I )(gPhw)‖s + ‖g(Phw − v)‖s

� C
(‖vh − Phw‖s + ht−s‖gPhw‖t + ‖g(Phw − v)‖s

)
� C

(‖vh − Phw‖s + ht−s‖Phw‖t + ‖Phw − v‖s

)
.

Given the convergence on the left-hand side of (44) we see that lim sup ‖Rh(gvh) − gv‖s �
C‖w − v‖s , yielding the assertion since Ht is dense in Hs . �

The next result says that the sequence of projections Rh, h ∈ H, considered as maps from the
space Wh of grid functions on the mesh �′

h into H 0 is bounded.
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Proposition 3.14. Let condition (R) be satisfied. Then

‖Rhfh‖0 �C‖fh‖h for fh ∈ Wh and h ∈ H. (45)

Proof. The second estimate (33) with g replaced by fh gives

‖Rhfh‖2
0 �C

M∑
k=1

∑
�∈�h

|(fh, �k,�)h|2. (46)

We want to represent fh with respect to the basis {
j,�|�′
h
, j = 1, . . . , J, � ∈ �h} of Wh, where


j,�(x) := bj,�
∑
�∈�h

��(�h)�j

(
x − �h

h

)
for j = 1, . . . , J and � ∈ �h.

Here �j (·) := �(· − �j ) and � is the 1-periodically extended hat function with support [−�, �]
and �(0) = 1, where � is chosen small enough such that the supports of �j , j = 1, . . . , J , do
not intersect. The basis property of the 
j,�|�′

h
is clear since the matrix with elements ��(�h) is

nonsingular and the shifted and scaled �j , obviously, form a basis of Wh. The coefficients bj,�
will be chosen later. A straightforward calculation shows that the Fourier series of these functions
are


j,� =
∑
m≡�


̂j,�(m)�m for j = 1, . . . , J and � ∈ �h, (47)

where we have used 
̂j,�(m) = 0 for m /≡ � and where


̂j,�(m) = bj,��̄m(h�j )� sinc2 (h��m) for m ≡ �,

with sinc (x) := sin(x)/x. We choose bj,� such that 
̂j,�(�) = 1, allowing (47) to be rewritten
as


j,�(x) = ��(x)�j

(
Nx,

�

N

)
for j = 1, . . . , J, � ∈ �h,

where for � ∈ R

�j (�, y) := 1 +
∑
��=0

(
sinc (��(y + �))

sinc (��y)

)2

��(� − �j ) for j = 1, . . . , J.

The sum defining �j converges absolutely and uniformly and �j (�, y) is continuous in y for
|y|� 1

2 .
After these preparations we continue by estimating the right-hand side of (46). We represent

fh in the form

fh =
J∑

j=1

∑
�∈�h

cj,�
j,�|�′
h

(48)

and calculate in a similar way to (69) with the aid of the second part of Lemma A.2

(fh, �k,�)h =
J∑

j=1

cj,�Q
(
�j

(
·, �

N

)
, �k

(
·, �

N

))
.
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Since for �j being a quadrature point the functions �(�j , ·) are continuous on [− 1
2 , 1

2 ] (see [3]),
we obtain

∑
�∈�h

|(fh, �k,�)h|2 �C

J∑
j=1

∑
�∈�h

|cj,�|2.

In view of (46) it remains to prove

J∑
j=1

∑
�∈�h

|cj,�|2 �C‖fh‖2
h. (49)

To this end, note first that, similarly to (68), we derive with the aid of Lemma A.2∥∥∥∥∥∥
J∑

j=1

∑
�∈�h

cj,�
j,�

∥∥∥∥∥∥
2

0

=
J∑

j=1

J∑
k=1

∑
�∈�h

Gj,k

( �

N

)
cj,�c̄k,�,

where

Gj,k(y) := Q
(
�j (·, y), �k(·, y)

)
for |y|� 1

2 .

The matrix G(y) with elements Gj,k(y) is for each y positive definite since, recalling that the
�j ∈ [0, 1) are pairwise distinct, obviously the functions �j (·, y) are linearly independent. Hence,
since G(y) is also continuous,

J∑
j=1

∑
�∈�h

|cj,�|2 �C

∥∥∥∥∥∥
J∑

j=1

∑
�∈�h

cj,�
j,�

∥∥∥∥∥∥
2

0

. (50)

On the other hand, the bound∥∥∥∥∥∥
J∑

j=1

∑
�∈�h

cj,�
j,�

∥∥∥∥∥∥
2

0

�C‖fh‖2
h, (51)

holds since the sum in the norm is in each subinterval [xn, xn+1) a linear combination of the hat
functions �j ((· − xn)/h), j = 1, . . . , J , interpolating fh in the points xn,j , j = 1, . . . , J . The
estimates (50) and (51) prove (49). �

Remark 3.15. The estimate (31) can be easily derived from (45) and (41), but we preferred to
give a direct proof.

4. Superapproximation and commutator properties

For the analysis of variable coefficient operator equations Lu = f, as in [9,18], a key role
is played by certain commutator properties of the projection Rh combined with the operator of
multiplication by a smooth function. Referred to in [9] as CPI, CPII, they are here called the
superapproximation (Theorem 4.1) and commutator properties (Theorem 4.4).
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Theorem 4.1. Let s0 ∈ [0, r − M] and let Th : Hs0 → S
r,M
h , h ∈ H, be projections satisfying

the approximation property

‖(I − Th)f ‖s0 �Chr−M−s0‖f ‖r−M for f ∈ Hr−M. (52)

Assume g ∈ Cr(T). Then the superapproximation property

‖(I − Th)(gvh)‖s0 �Ch1+r−M−s0‖g′‖r−1,∞‖vh‖r−M for vh ∈ S
r,M
h (53)

holds true. If s0 ∈ [0, r − M) (and hence M < r) and if (52) is also satisfied with s0 replaced by
r − M then

‖(I − Th)(gvh)‖s �Ch1+t−s‖g′‖r−1,∞‖vh‖t for vh ∈ S
r,M
h , (54)

s0 �s < r − M + 1
2 and t �r − M .

The estimate (53) is called a superapproximation property, because the power of h in it is larger
by 1 than the order expected from (52). Note that by Proposition 3.7 the bound (54) holds for
Th := Rh, the discrete orthogonal projection, with s0 = 0 provided M < r , and thus the following
corollary holds.

Corollary 4.2. Assume M < r , 0�s < r − M + 1
2 and t �r − M . Then

‖(I − Rh)(gvh)‖s �Ch1+t−s‖g′‖r−1,∞‖vh‖t for vh ∈ S
r,M
h . (55)

Proof of Theorem 4.1. For given vh ∈ S
r,M
h let wh ∈ S

r,M
h be any spline satisfying the additional

condition∫ 1

0

(
g(x)vh(x) − wh(x)

)
dx = 0.

Then

‖(I − Th)(gvh)‖s0 = ‖(I − Th)(gvh − wh)‖s0

� Chr−M−s0‖gvh − wh‖r−M

� Chr−M−s0‖(gvh)
(r−M) − w

(r−M)
h ‖0,

where in the last estimate we used the fact that for r − M being a nonnegative integer the norms
‖f ‖r−M and ‖f (r−M)‖0 are equivalent for functions having mean value zero. Note that

{w(r−M)
h : wh ∈ S

r,M
h } = S

M,M
h ,

i.e. equal to the space of piecewise continuous polynomials of degree M − 1 with breakpoints
in �h. By virtue of the approximation power of S

M,M
h (note that this is a strictly local property,

as is needed because (gvh)
(r−M) may have jumps at the knots) we obtain, with derivatives taken

piecewise,

‖(gvh)
(r−M) − w

(r−M)
h ‖0 �ChM‖(gvh)

(r)‖0

by choosing wh adequately. We apply the Leibniz rule, take v
(r)
h = 0 (piecewise) into account

and use the inverse inequality to derive further

‖(gvh)
(r−M) − w

(r−M)
h ‖0
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�ChM‖g′‖r−1,∞
r−1∑
m=0

‖v(m)
h ‖0

�ChM‖g′‖r−1,∞

⎡⎣r−M∑
m=0

‖v(m)
h ‖0 +

r−1∑
m=r−M+1

hr−M−m‖v(r−M)
h ‖0

⎤⎦
�Ch‖g′‖r−1,∞‖vh‖r−M. (56)

This proves the first part of the theorem.
For the proof of the second part, first note that because of the inverse inequality it is sufficient

to consider the case t = r − M only. Since by assumption (52) holds also for s0 replaced by
r − M , it follows by interpolation that (52), and consequently (53), holds for s0 replaced by s for
s ∈ [s0, r − M]. So we are left with the case r − M < s < r − M + 1

2 and t = r − M . Here the
map

Df (x) := 1

i2�
f ′(x) + f̂ (0),

which establishes an isometric isomorphism between Ht and Ht−1 for t ∈ R, is helpful. For
vh ∈ S

r,M
h and zh ∈ S

M,M
h arbitrary we obtain

‖(I − Th)(gvh)‖s = ‖D(r−M)[(I − Th)(gvh)]‖s−r+M

� ‖D(r−M)(gvh) − zh‖s−r+M + ‖D(r−M)[Th(gvh)] − zh‖s−r+M.

We apply the inverse estimate to the second term and then choose zh to satisfy simultaneously

‖D(r−M)(gvh) − zh‖0 �ChM‖[D(r−M)(gvh)](M)‖0

and

‖D(r−M)(gvh) − zh‖s−r+M �Chr−s‖[D(r−M)(gvh)](M)‖0.

(The existence of such zh has been proved for M = 1 in [10, Corollary 2.8] and for general M it
follows from [6, Proposition A.1]; for the application of these results note that t := s − r + M ∈
(0, 1

2 ) and hence the spaces Ht and Wt
2(0, 1) defined in [10] are equivalent.) We obtain

‖(I − Th)(gvh)‖s

�C
(
hr−s‖[D(r−M)(gvh)](M)‖0 + Chr−s−M‖D(r−M)[Th(gvh)] − zh‖0

)
�Chr−s−M

(
hM‖[D(r−M)(gvh)](M)‖0 + ‖D(r−M)[(1 − Th)(gvh)]‖0

)
�Chr−s−M

(
hM‖(gvh)

(r)‖0 + ‖(1 − Th)(gvh)‖r−M

)
. (57)

In the last estimate we used ‖[D(r−M)(gvh)](M)‖0 �‖(gvh)
(r)‖0, which holds true since

[D(j)(f )]′ =
[

1

i2�

(
D(j−1)(f )

)′ + ̂D(j−1)(f )(0)

]′
= 1

i2�

[
D(j−1)(f )

]′′
and so forth. The first term on the right-hand side of (57) has already been estimated when
working out (56). The second has already been shown to have the desired bound. Thus we obtain,



218 R.D. Grigorieff, I.H. Sloan / Journal of Approximation Theory 137 (2005) 201–225

for r − M < s < r − M + 1
2 ,

‖(I − Th)(gvh)‖s �Ch1+r−M−s‖g′‖r−1,∞‖vh‖r−M,

completing the proof. �

Remark 4.3. The result of Theorem 4.1 can be extended to projections on splines on nonuniform
meshes in Lp-spaces (see [6]).

For Th = Ph, the projection from (29), the inequality (54) holds with s0 ∈ (−∞, r − M]. In
this case the result has been proved in [8], with two differences: for s ∈ (r −M, r −M + 1

2 ) only
the additional superconvergence power h with  := r − M + 1 − s is obtained instead of the
full power h as in (54), and the dependence of the constant on the multiplier g is not available.
The commutator property CPI in the general framework of [9] contains only an additional power
h� with some � > 0.

In [17], a commutator property is proved for the case M = 1 of smoothest splines with
Th := Rh, the qualocation projection, involving more generally a pseudo-differential operator L.
If s0 = 0 and L = I is taken there then (54) is implied with a slightly different range of indices.
The dependence of the bound on g in [17] involves derivatives of higher order than in (54).

In [9], a second kind CPII of commutator property for Ph is proved, which also contains an
additional superconvergence power o(1). We now give a proof of a corresponding commutator
property in our context, which provides an additional power h and an explicit dependence of the
constant on g.

Theorem 4.4. Let condition (R) and M < r be satisfied. Assume that 1
2 < t �r, 0�s < r−M+ 1

2
and g ∈ Cr(T). Then

‖Rhg(I − Rh)f ‖s �Ch1+t−s‖g′‖r−1,∞‖f ‖t for f ∈ Ht . (58)

Proof. With the aid of Proposition 3.14 we obtain

‖Rhg(I − Rh)f ‖0 � C‖Rhg(I − Rh)f ‖h

= sup
vh∈S

r,M
h ,‖vh‖h=1

(
g(I − Rh)f, vh

)
h

= sup
vh∈S

r,M
h ,‖vh‖h=1

(
(I − Rh)f, (I − Rh)(gvh)

)
h

� ‖(I − Rh)f ‖h sup
vh∈S

r,M
h ,‖vh‖h=1

‖(I − Rh)(gvh)‖h. (59)

The first of the last two factors can be bounded with Proposition 3.11 by

‖f − Rhf ‖h �Cht‖f ‖t .

Taking additionally (54) with Th := Rh and the inverse inequality into account, we obtain

‖(I − Rh)(gvh)‖h � Ch‖(I − Rh)(gvh)‖1 �Ch2‖g′‖r−1,∞‖vh‖1

� Ch‖g′‖r−1,∞‖vh‖0 �Ch‖g′‖r−1,∞‖vh‖h,

in the last step using Proposition 3.5. The assertion now follows with another application of the
inverse inequality to the left-hand side of (59). �



R.D. Grigorieff, I.H. Sloan / Journal of Approximation Theory 137 (2005) 201–225 219

Remark 4.5. The same kind of reasoning, but somewhat simpler, yields the commutator property
(58) with Ph in place of Rh. In this case the range of admissible indices can be increased to 0�s�r

(as in property CPII in [9]).

5. An example: interpolation using splines with double knots

In this section we illustrate the theory for the particular case J = M = 2, that is, of interpolation
by double knot splines of order r �2. The analysis is complete if the two interpolation points are
symmetrically located (meaning that if � ∈ (0, 1) is an interpolation point, then so is 1 − �). In
this way we extend the analysis of McLean and Prößdorf [8] for collocation with double knot
splines (see [8, Section 5]), at least for the case of the identity operator, by proving a conjecture
in that paper (see [8, Remark 5.5]). Similar arguments prove the conjecture for the whole class of
pseudo-differential operators considered in [8].

According to Proposition 3.7 and Definition 3.6, for the case J = M = 2 we have stability
of Rh and optimal convergence of the interpolation projection Rhf to f if the condition (R) is
satisfied; that is to say, if the determinant

F(y) :=
∣∣∣∣∣ 1 + yr �̃1(�1, y) �̃2(�1, y)

1 + yr �̃1(�2, y) �̃2(�2, y)

∣∣∣∣∣ (60)

is different from zero for all y ∈ [− 1
2 , 1

2 ]. The easily verified symmetry property

F(−y) = (−1)r−1F(y) for |y| < 1 (61)

tells us that F(0) = 0 (and hence the property (R) fails) if F is real and r is even, or if F is
imaginary and r is odd. We shall see that these two situations correspond to the two kinds of
symmetric choice for the interpolation points.

From (9)–(10) we can write

�̃1(�, y) =
{

(g+
r + ih−

r )(�, y) if r even,

(g−
r + ih+

r )(�, y) if r odd,

�̃2(�, y) + y�̃1(�, y) =
{

(g−
r−1 + ih+

r−1)(�, y) if r even,

(g+
r−1 + ih−

r−1)(�, y) if r odd,

where for � > 0 and |y| < 1

g±
� (�, y) :=

∞∑
�=1

[
1

(� + y)�
± 1

(� − y)�

]
cos 2���,

h±
� (�, y) :=

∞∑
�=1

[
1

(� + y)�
± 1

(� − y)�

]
sin 2���.
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By virtue of the properties of determinants we can write

F(y) =
∣∣∣∣∣ 1 + yr �̃1(�1, y) (�̃2 + y�̃1)(�1, y)

1 + yr �̃1(�2, y) (�̃2 + y�̃1)(�2, y)

∣∣∣∣∣− y

∣∣∣∣∣ 1 �̃1(�1, y)

1 �̃1(�2, y)

∣∣∣∣∣
=
∣∣∣∣ 1 + yr(g±

r + ih∓
r )(�1, y) (g∓

r−1 + ih±
r−1)(�1, y)

1 + yr(g±
r + ih∓

r )(�2, y) (g∓
r−1 + ih±

r−1)(�2, y)

∣∣∣∣
−y
(
�̃1(�2, y) − �̃1(�1, y)

)
=
∣∣∣∣ (k±

r + iyrh∓
r )(�1, y) (g∓

r−1 + ih±
r−1)(�1, y)

(k±
r + iyrh∓

r )(�2, y) (g∓
r−1 + ih±

r−1)(�2, y)

∣∣∣∣
−y
(
(g±

r + ih∓
r )(�2, y) − (g±

r + ih∓
r )(�1, y)

)
,

where the upper or lower signs hold according to whether r is even or odd, and

k±
r (�, y) := 1 + yrg±

r (�, y).

The next two propositions cover the two possible kinds of symmetrically arranged interpolation
points. The first proposition is a special case of McLean and Prößdorf [8, Lemma 5.1]. The first
part of the second proposition is a conjecture in [8].

Proposition 5.1. Let J = M = 2, and let �1 = 0 and �2 = 1
2 . If r is even then F(0) = 0, and

the condition (R) fails. If r is odd then the condition (R) holds, and the interpolant Rhf ∈ S
r,M
h

satisfies

‖Rhf − f ‖s �Cht−s‖f ‖t for f ∈ Ht (62)

and all s, t satisfying 0�s < r − M + 1
2 , 1

2 < t �r .

Proof. Noting that

h±
� (�, y) = 0 if � = 0 or 1

2 ,

we see with this choice F(y) is real. If r is even then (61) gives F(0) = 0, and condition (R) fails.
If r is odd and �1 = 0, �2 = 1

2 we have

F(y) =
∣∣∣∣ k−

r (0, y) g+
r−1(0, y)

k−
r ( 1

2 , y) g+
r−1(

1
2 , y)

∣∣∣∣− y
(
g−

r ( 1
2 , y) − g−

r (0, y)
)
.

Since by (61) F is now an even function, it is sufficient to consider y ∈ [0, 1
2 ]. But for y ∈ [0, 1

2 ]
it is shown in [3, Theorem 2] that for � > 0

g−
� ( 1

2 , y) > 0, g−
� (0, y) < 0, g+

� ( 1
2 , y) < 0, g+

� (0, y) > 0

and

k±
� (�, y)�0, k+

� (�, y) > 0 for � �= 1
2 , k−

� (�, y) > 0 for � �= 0 (63)

from which F(y) < 0 follows immediately. �

Proposition 5.2. Let J = M = 2, and let �1 = �, �2 = 1 − � with � ∈ (0, 1
2 ). If r is even then

the condition (R) holds, and the interpolant Rhf ∈ S
r,M
h satisfies (62). If r is odd then F(0) = 0,

thus the condition (R) fails.
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Proof. Since �̃k(1 − �, y) = �̃k(�, y), it follows from (60) that the choice �1 = �, �2 = 1 − �
makes F imaginary. It then follows from (61) that F(0) = 0 if r is odd, thus condition (R) fails in
this case. If r is even then F is even, thus it is sufficient to consider y ∈ [0, 1

2 ]. In this case, noting
that g±

� (1 − �, ·) = g±
� (�, ·), h±

� (1 − �, ·) = −h±
� (�, ·) and k±

� (1 − �, ·) = k±
� (�, ·),

F(y) = 2i
(−k+

r (�, y)h+
r−1(�, y) + yrh−

r (�, y)g−
r−1(�, y) + yh−

r (�, y)
)

= 2i
(−k+

r (�, y)h+
r−1(�, y) + yh−

r (�, y)k−
r−1(�, y)

)
.

That the expression in brackets is nonpositive follows from (63) and from (see [3, Theorem 2])

h+
� (�, y)�0, h−

� (�, y)�0 for y ∈ [0, 1
2 ].

The proof of Brown et al. [3, Theorem 2] also yields the stronger result that h−
� (�, y) is nega-

tive for � ∈ (0, 1
2 ), proving that the expression in the brackets is positive, and completing the

proof. �
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Appendix A.

This appendix provides a collection of simple results invoked in the rest of the paper.

Lemma A.1.

N−1∑
n=0

��−m(nh) =
{

0 if � /≡ m,

N if � ≡ m
(64)

and

(��, �m)h =
{

0 if � /≡ m,

Q(� �−m
N

, 1) if � ≡ m.
(65)

Proof. The first result is trivial, given

N−1∑
n=0

��−m(nh) =
N−1∑
n=0

(
e2�i(�−m)/N

)n

.

The second follows from

(��, �m)h =
N−1∑
n=0

h

J∑
j=1

�j��−m(xn + h�j )

= h

N−1∑
n=0

��−m(nh)

J∑
j=1

�j� �−m
N

(�j ). �

Many integrals of interest in this paper take the form considered in the next lemma.
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Lemma A.2. Let D be a 1-periodic function on R. If D ∈ L1(T) then∫ 1

0
��−m(x)D(Nx) dx =

{
0 if � /≡ m,∫ 1

0 � �−m
N

(�)D(�) d� if � ≡ m.
(66)

If D is defined everywhere in R then

QN

(
��−mD(N ·)) =

{
0 if � /≡ m,

Q1
(
� �−m

N
D
)

if � ≡ m.
(67)

Proof. The left-hand side of the first identity can be written as∫ 1

0
��−m(x)D(Nx) dx =

N−1∑
n=0

∫ xn+1

xn

��−m(x)D(Nx) dx

= h

N−1∑
n=0

∫ 1

0
��−m(xn + h�)D(n + �) d�

=
(

h

N−1∑
n=0

��−m(nh)

)∫ 1

0
� �−m

N
(�)D(�) d�,

where in the last step we used the periodicity of D. The first identity then follows from (64).
The second identity follows in almost the same way, if we recall that the rule QN is an n-fold

copy of the rule Q1: we have

QN

(
��−mD(N ·))= h

N−1∑
n=0

Q1
(
� �−m

N
(n + ·)D(n + ·))

=
(

h

N−1∑
n=0

��−m(nh)

)
Q1
(
� �−m

N
D
)
. �

Corollary A.3. For �, � ∈ �h and k, � = 1, . . . , M

(�k,�, ��,�)0 = ���

(
�k

(
·, �

N

)
, ��

(
·, �

N

))
0
, (68)

(�k,�, ��,�)h = ���Q
(
�k

(
·, �

N

)
, ��

(
·, �

N

))
. (69)

Proof. Using the representation (13) for �k,� we obtain

(�k,�, ��,�)0 =
∫ 1

0
��−�(x)�k

(
Nx,

�

N

)
��

(
Nx,

�

N

)
dx

and the first result follows from the identity in Lemma A.2 on setting D := �k(·, �
N

)��(·, �
N

),
and noting the obvious 1-periodicity of �k(·, y). The second result follows similarly from the
second identity in Lemma A.2. �

The following result is also an immediate consequence of Lemma A.2.
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Corollary A.4. For � ∈ �h, k = 1, . . . , M and � ∈ Z

(��, �k,�)0 =
{

0 if � /≡ �,(
� �−�

N

, �k(·, �
N

)
)

0
if � ≡ �,

(70)

(��, �k,�)h =
{

0 if � /≡ �,

Q
(
� �−�

N

, �k(·, �
N

)
)

if � ≡ �.
(71)

Lemma A.5. The Fourier series of the spline functions �k,� are given by

�1,�(x) = ��(x) +
∑
m≡�

′ ( �

m

)r

�m(x), (72)

�k,�(x) =
∑
m≡�

′ (N

m

)r (
m − �

N

)k−1

�m(x) for k = 2, . . . , M, (73)

where the prime on the sum indicates that the m = � term is to be omitted.

Proof. From (13), (11) and (9) we can write

�1,�(x) = ��(x) + �r
∑
��=0

1

(� + �N)r
��+�N (x)

= ��(x) +
∑
m≡�

′ ( �

m

)r

�m(x),

while (12) gives for k = 2, . . . , M

�k,�(x) = Nr
∑
��=0

�k−1

(� + �N)r
��+�N (x)

=
∑
m≡�

′ (N

m

)r (
m − �

N

)k−1

�m(x). �

Lemma A.6. Let vh ∈ S
r,M
h and s < r − M + 1

2 . If vh has the representation

vh =
M∑

k=1

∑
�∈�h

ck,��k,� (74)

then

‖vh‖2
s =

∑
�∈�h

〈�〉2s |c1,�|2 +
∑
�∈�h

∥∥∥∥∥
M∑

k=1

c̃k,��(s)
k

(
·, �

N

)∥∥∥∥∥
2

0

, (75)

where

c̃k,� :=
{

�rNs−rc1,� for k = 1,

Nsck,� for k = 2, . . . , M
(76)
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and

�(s)
k (�, y) :=

∑
��=0

|y + �|s �k−1

(y + �)r
��(�) for � ∈ R and |y|� 1

2
. (77)

Proof. For the proof it is helpful to introduce the following linear operator As (more pre-
cisely, a pseudo-differential operator of order s) defined by its effect on the Fourier series
of the distribution f:

f (x) =
∞∑

�=−∞
f̂ (�)�l (x) → Asf (x) =

∞∑
�=−∞

〈�〉s f̂ (�)�l (x).

One has

‖f ‖2
s =

∞∑
�=−∞

〈�〉2s |f̂ (�)|2 = ‖Asf ‖2
0. (78)

We apply this relation to vh in the form (74). Taking the Fourier representations (72) and (73) into
account, we obtain

Asvh(x) =
M∑

k=1

∑
�∈�h

ck,�As�k,�(x)

=
∑
�∈�h

c1,�

⎡⎣〈�〉s��(x) +
∑
m≡�

′ ( �

m

)r |m|s�m(x)

⎤⎦
+

M∑
k=2

∑
�∈�h

ck,�
∑
m≡�

′ (N

m

)r (
m − �

N

)k−1

|m|s�m(x)

=
∑
�∈�h

c1,�〈�〉s��(x) +
∑
�∈�h

c̃1,�
∑
��=0

|�/N + �|s
(�/N + �)r

��+N�(x)

+
∑
�∈�h

M∑
k=2

c̃k,�
∑
��=0

�k−1|�/N + �|s
(�/N + �)r

��+N�(x)

=
∑
�∈�h

c1,�〈�〉s��(x) +
∑
�∈�h

��(x)

M∑
k=1

c̃k,��(s)
k

(
Nx,

�

N

)
.

We now invoke (78), and prove (75) by noting that the last two sums are orthogonal in H 0 and
that ∫ 1

0
��−�(x)�(s)

k

(
Nx,

�

N

)
�(s)

j

(
Nx,

�

N

)
dx = ���

∫ 1

0
�(s)

k

(
�,

�

N

)
�(s)

j

(
�,

�

N

)
d�,

which follows immediately from Lemma A.2. �
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